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Mathematical Vocabulary

“You keep using that word. I do not think it means what you think it means.”
- Inigo Montoya, from The Princess Bride

Consider the humble while loop in most programming languages. Here's an example of a while
loop in a piece of Java code:

int x = 10;
while (x > 0) {

x = x - 1;
println(x);

}

There's something subtle in this loop. Notice that in the very last iteration of the loop, x will drop
to zero, so the println call will print the value 0. This might seem strange, since the loop explic-
itly states that it runs while x is greater than 0.

If you've been programming for a while (pun not intended), you might not think much of this ob-
servation. “Of course,” you might say, “that's just how  while loops work. The condition is only
checked at the top of the loop, so even if the condition becomes false in the middle of the loop, the
loop keeps running.” To many frst-time programmers, though, this might seem completely coun-
terintuitive. If the loop is really supposed to run  while x is greater than 0, why doesn't it stop as
soon as x becomes zero?

The reason this is interesting/tricky is that there's a distinction between the  informal use of the
word “while” in plain English and the formal use of the keyword while in software engineering.
The dictionary defnition of “while” can help you build a good intuition for how while loops work
in actual code, but it doesn't completely capture the semantics of a while loop. For that, you need
to learn exactly how while loops work and what they mean.

There are analogous concerns that arise in mathematics. Certain words and phrases, like “arbi-
trary,” “by defnition,” and “without loss of generality,” have very specifc meanings in mathemati-
cal proofs that don't exactly match their English defnitions. If you aren't aware of the specifc con-
cepts that these words and phrases imply in a mathematical proof, you can end up writing proofs
that don't actually say what you think they say – just as you can easily write buggy code with a
while loop if you don't fully understand some of the trickier semantics of how while loops work.

This handout contains a list of some common mathematical terms and phrases with very precise
meanings. When you're writing proofs in this course, we recommend consulting this handout to
make sure that everything you're saying means what you think it means.
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Arbitrary
In mathematics, we commonly write statements like “let  x be chosen arbitrarily” or “consider an
arbitrary x” in the context of proving universal statements. If a variable x is declared to be chosen
arbitrarily, it means that the reader of the proof should be able to supply any choice of x they like
matching the criteria you've outlined and the proof should still work. For example, a statement of
the form “consider an arbitrary natural number n” indicates to the reader that any choice of natural
number n will work.

Be careful about using the word “arbitrary” in other contexts. For example, don't say something
like this:

⚠   Choose an arbitrary x = 137. ⚠

This statement is problematic because if  x really is supposed to be chosen arbitrarily, we should
have a lot of options to pick from, but here, x is defned to be 137. If you want to create a variable
x whose value is 137, that's fne. Just say something like “let x = 137.” Don't use the word “arbi-
trary,” since that means something else.

Similarly, be careful about writing something like the following:

⚠ Since n is even, we know that n = 2k for some arbitrary integer k. ⚠

Here, we know that there is indeed some integer k where n = 2k, but it’s not arbitrary. There’s only
one choice of k we can pick here that will work.

Assume
In mathematics, you are allowed to assume anything you'd like. You can assume that an integer n is
even number, that a set S contains every natural number, that a player in a game behaves perfectly
rationally, that there is a magic silver bear that rides on a narwhal, etc.. When you make an as-
sumption, you're not arguing that something is true – you're just saying “hypothetically speaking,
let's assume that this is true and see where it goes.”

There are many places in mathematics where it's totally normal to make assumptions. If you're
proving an implication of the form “If P, then Q,” you typically would assume that P is true, then
show under that assumption that Q must be true as well. In a proof by contradiction, you assume
some statement is false in order to arrive at a contradiction. In a proof by induction, you assume
the inductive hypothesis in the inductive step of the proof.

That said, you should be careful when making assumptions. If you're trying to prove that some re -
sult Q is true and you assume P in the course of doing so, you will ultimately need to justify why
exactly P has to be true. Otherwise, your result (Q) is dangling in the air, held up only by your as-
sumption (P), which may or may not be on solid ground.

Another weirdness with assumptions is  that you're allowed to assume something that's patently
false if you'd like. This is the norm in a proof by contradiction, where you assume something you
know can't be right in order to derive a contradiction from it later on.
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By Defiitioi
When you're writing a proof, you'll at some point need to argue that some basic fact is true because
it's “clearly” true. In some cases, you can do this by calling back to the defnition of some term. For
example, suppose that you want to prove that some number n is even. The defnition of a number n
being even is that there is some integer k such that n = 2k. Therefore, if you can show that there is
an integer k such that n = 2k, then you can claim, by defniition, that n is even. Claiming that some-
thing is true by defnition means that if you were to actually look at the defnition of the appropri-
ate term or phrase, you would see that the statement is true because the defnition says it is.

We often see people use the term “by defnition” to claim something is true that, while true, isn't
really true “by defnition.” For example, the following is an incorrect use of the phrase “by defni-
tion:”

⚠ By defnition, we know that 11, 2, 3} ⊆ 11, 2, 3, ,} ⚠

A good question here is “by defnition of whait?” Of the set 11, 2, 3}? Of the set 11, 2, 3, ,}? Or of
the ⊆ relation? While it's absolutely true that the set 11, 2, 3} is a subset of the set 11, 2, 3, ,}, the
justifcation “by defnition” doesn't clearly articulate why.

In this case, “by defnition” was supposed to refer to the defnition of the ⊆ relation. That defnition
says the following:

A set S is a subset of a set T, denoted S ⊆ T, if every element of S is also an element of T.

If you have this defnition, you can look at the sets 11, 2, 3} and 11, 2, 3, ,} and, after checking
that each element of the frst set is an element of the second, can conclude that indeed that the frst
set is a subset of the second. However, the reader of the proof still has to put in some extra work to
confrm that this is the case. A better way to justify why 11, 2, 3} is a subset of 11, 2, 3, ,} would
be to say something like this:

Because every element of 11, 2, 3} is an element of 11, 2, 3, ,},
by defnition we see that 11, 2, 3} ⊆ 11, 2, 3, ,}.

If
The word “if” in mathematics is overloaded (it has several diferent meanings that difer by con-
text) and probably causes more confusion than most other terms.

The frst context for the word “if” arises in the context of implications. Many statements that we'd
like to prove are implications. For example:

If n is an even natural number, then n2 is an even natural number.
If A ⊆ B and B ⊆ A, then A = B

In this context, “if” sets up a one-directional implication. The statement “If P, then Q” means that
if P is true, then Q is true. The implication doesn't necessarily fow backwards – it's quite possible
that Q can be true even if P isn't true.

You sometimes see “if” used in statements like these:

The number p2 is rational if p is rational.
A graph is four-colorable if it's planar.

These statements also set up implications, though the implications fow the opposite direction. The
statement “P if Q” is equivalent to “If Q, then P,” meaning that the second part of the statement im-
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plies the frst. Be careful when reading statements with “if” in them to make sure that you under-
stand what statement is being articulated!

The confusing part about “if” is that we also use the word “if” in defnitions, which behave difer -
ently than implications. For example, here are some mathematical defnitions:

We say that a number n is even if there is an integer k such that n = 2k.
We'll call a graph a planar graph if it can be drawn in the plane with no edges crossing.

A set S is called countably infnite if  S  =  ℕ .

These terms introduce new mathematical defnitions by using the word “if.” This can be a bit con-
fusing because, unlike implications, defnitions fow in both directions. For example, if n is even,
then I can write it as 2k for some integer k; independently, if I fnd a number of the form 2k, then I
know that it's even. Even though as written the defnition seems to say “if n = 2k, then n is even” as
if it's an implication, it's really saying that the term “n is even” means exactly “there is an integer k
where n = 2k.” Knowing one of these automatically tells you the other.

So how do you  diferentiate  between these two cases?  One simple  test  you  can use is  to ask
whether you're working with a brand-new term or whether you're working with a term you've al -
ready seen before. If some new concept or notation is being introduced for the very frst time,
chances are you're looking at a defnition, so “if” means “is defned to mean.” If you see existing
terms being linked together,  chances are you're looking at an implication. Not sure which one
you're looking at? Just ask!

If
No, that's not a typo. The word “if” (if you can even call it a word) is a mathematical shorthand
meaning “if and only if.” Unlike “if,” which sets up a one-directional implication, “if” sets up a
two-way implication. For example, the statement

n is an integer if n2 is an integer

means “if n is an integer, then n2 is an integer, and if n2 is an integer, then n is an integer.”

When reading mathematics,  be careful to pay attention to whether you're reading “if” or “if,”
since they mean very diferent things. Also, when writing mathematics, be careful not to write “if”
when you mean “if.” We fnd that a lot of frst-time proofwriters end up using “if” where they
mean “if,” often because “if” looks a lot cooler. It's fne to use “if” in your proofs – just be careful
to make sure that it's the right word for the job!

Vacuously True
A vacuous itruith is a statement that is true because it doesn't apply to anything. There are two main
situations in which you see vacuous truths. First, you'll often encounter statements like

“Every X has property Y”

when there are no objects of type X. In this case, you can claim that the above statement is vacu-
ously true, because there are no X's. For example, the statements “every unicorn is pink” and “ev-
ery set S where  S  =  ℘(S)  contains 137” are vacuously true because there are no unicorns (sorry)
and there are no sets S where  S  =  ℘(S)  (thanks, Cantor).

The other case where vacuous truths arise is in statements like

“If P is true, then Q is true”
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when the statement P is never true. These statements are also called vacuously true. For example,
the statement “if 2 + 2 = 5, then everyone gets free ice cream” is vacuously true because 2 + 2 ≠ 5,
and the statement “if the American fag in 201, had 5, stars on it, then the universe is on fre” is
vacuously true because the American fag in 201, had only 50 stars on it.

One of the more common classes of mistakes we see in proofs – especially in the base cases of in-
ductive proofs (we'll cover them in a few weeks) – is when a proof incorrectly claims that a state -
ment is vacuously true. For example, consider this statement:

“Every set with no elements has cardinality 0.”

This statement is indeed a true statement: there's just one set with no elements, the empty set, and
its  cardinality is  indeed zero.  However,  it's  not a  vacuously itrue statement because there is  an
empty set. If a proof were to claim that this statement is vacuously true, the proof would be wrong
– it's true, but not vacuously.

We also see a lot of proofs that try to use vacuous truth in places where it doesn't apply. For exam-
ple, consider this statement:

“There is a pink unicorn.”

This statement is not vacuously true, nor is it true at all. Instead, this statement is false. Why is
this?

Here are two diferent ways you can see this. First, there's the “common sense” intuition for this
statement. The statement claims that if you searched far and wide, eventually you'd fnd a pink uni-
corn. This isn't true, though: because there are no unicorns, there certainly aren't any pink uni-
corns. Therefore, saying that there is a unicorn when there aren't actually any unicorns would be
incorrect. 

Here's another way to think about this. Let's ask a related question: what is the negation of the
above statement? To determine this,  let's look closely at  the original  statement. The statement
“there is a pink unicorn” is an existential statement, since it's essentially this statement:

“There is a unicorn that is pink.”

We can negate this statement using the standard technique for negating existential statements. That
gives us this statement:

“Every unicorn is not pink.”

This statement, interestingly enough is vacuously true – there aren't any unicorns, so it's true that
every unicorn isn't pink. Since the negation of the statement “there is a pink unicorn” is  itrue, it
must be the case that the statement “there is a pink unicorn” must be false.

More generally, exisitenitial sitaitemenits cannoit be vacuously itrue. Vacuous truth only applies to impli-
cations and to universal statements.
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Without Loss of Geierality
Suppose you come to a step in a proof where you have two numbers p and q and you know for a
fact that exactly one of them is even and exactly one of them is odd. You could write the remain-
der of the proof like this:

We now consider two cases.

Case 1: p is even and q is odd. [ some argumenit ]

Case 2: p is odd and q is even. [ some argumenit ]

In both cases we see that [ someithing holds ], so [ we draw some conclusion ]

Depending on the structure of what you're proving, it's quite possible that you need to have totally
separate arguments for the two cases. However, in many cases, you'll fnd that the argument you're
making is exacitly the same, but with the values of p and q interchanged. When that happens, you
can avoid writing out the cases and duplicating your argument by using the magical and wonderful
phrase “without loss of generality.” For example:

Without loss of geierality, assume that p is odd and that q is even. Then
[ some argumenit ], so [ we draw some conclusion ]

The phrase “without loss of generality” is a shorthand for “there are several diferent cases that we
need to consider, but they're basically all the same and so we're going to make a simplifying as-
sumption that doesn't miss any cases.” You're welcome to use it to collapse structurally identical
cases together if you'd like. However, be careful when using it! You can only use “without loss of
generality” if all the cases really are symmetric and if you don't have any special information that
would distinguish the objects under consideration.
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